
Hints With Attitude
by Brian Long

Arecent question sent to The
Delphi Clinic seemed to neces-

sitate a response longer than most
so I thought a short article would
be better. Here’s the question:

“I know there are some properties
that allow me to change the colour
and delay of the tooltip/hint win-
dow, but how do I change it more
drastically? For example, how would
I create an elliptical hint window?”

In responding I’d firstly like to
recap on the facilities available to
us for simple modifications of the
standard rectangular hint window.
Then we’ll look into changing the
shape of it.

Customised Hints
Normally, you get hints (also
known as tooltips) by setting a
control’s Hint property and then
ensuring its own ShowHint property
is True, either by setting it to True,
or by ensuring its ParentShowHint is
True and then making the parent
control’s ShowHint property True.

The Application object has a
number of properties and events
that affect hints. HintColor can be
used to change the colour of all
hints. This defaults to a value of
$80FFFF in Delphi 1 and the system
tooltip background colour (that is,
clInfoBk) in Delphi 2.

The HintPause property specifies
how long it takes for the first
tooltip to be displayed. Delphi 1
defaults to 0.8 seconds and Delphi
2 reduces this to 0.5 seconds.
Delphi 2 also has a HintHidePause
property, used to hide the tooltip
after a certain delay if the mouse
remains stationary (2.5 seconds)
and a HintShortPause property that
is used when the mouse is moved
from one control showing a tooltip
to another one. This is set to 50
milliseconds and is used to reduce
flicker if the mouse is quickly
moved over a set of controls.
Lastly, there is an Applica-
tion.ShowHint property that can be
used to disable tooltips for the
entire application.

Additionally, the Application
object has two events for use in the
context of hints. OnShowHint is trig-
gered just before a tooltip is about
to be drawn and allows you to cus-
tomise its colour, position and tex-
tual content and whether it will
draw or not. It also informs you of
the control the tooltip is for, so you
can do extra customisation. OnHint
is triggered whenever a tooltip
could be drawn (even if it won’t be)
and also when you move around
your menu structure. This event
allows you do other types of hint
generation such as hints on a
status bar (run Delphi’s Applica-
tion Expert to see one of these set
up). In the OnHint handler, the hint
text that needs to be drawn is
found in Application.Hint.

The project HINTDEMO.DPR on
this month’s disk shows an event
handler for each of these. They are
set up programmatically since the
Application object does not appear
on the Object Inspector.

If your hint has a pipe sign (|) in
it, the text to the left of it will
appear in the tooltip and the text to
the right will be accessible by the
OnHint handler. This allows you to
have a tooltip and, say, a status bar

hint with different text in. Some of
the controls in HINTDEMO.DPR
demonstrate this. The first part of
the hint text is returned by the
GetShortHint function and the sec-
ond part by GetLongHint. if there is
no pipe, they both return the whole
hint text.

Get Shapely
In order to change the general
shape of the tooltip, you need to
understand a little about their
implementation. The window that
the tooltip is drawn in is a class of
type THintWindow (a descendent of
TCustomControl) as defined in the
Controls unit. There is a class refer-
ence variable declared in the inter-
face section of the Forms unit,
HintWindowClass, that is initialised
with a value of THintWindow. This
variable can be given other values
so long as they represent classes
inherited from type THintWindow.

So the starting point is to derive
a class from THintWindow, custom-
ised as required, and to assign the
class type to HintWindowClass. How-
ever, doing this does not change
the tooltip, which still looks just
the same. This is because an
instance of the class stored in

➤ Hints, any
shape you
like...

December 1996 The Delphi Magazine 47

HintWindowClass is constructed in
the initialization section of the
Controls unit. This class is used
throughout the duration of the
program.

The way around the problem is
to set the Application’s ShowHint
property to False whereupon the
THintWindow instance gets de-
stroyed (no hint window object
means no hints). If the ShowHint
property is set back to True
another instance of the HintWindow-
Class class is created (this is how
the Controls unit did it to start
with). Of course, this time, it will be
your class that gets created and so
the tooltip will look suitably
different.

So what goes to make up the
THintWindow class? The class is
shown in Listing 1. There are a few
useful methods which are worth
exploring. The cm_TextChanged mes-
sage handler is designed to react to
an internal component message
that gets sent when the hint
window’s Caption is changed. This
method simply changes the width
and height of the hint window
accordingly. CreateParams is used
to modify the window styles and
other API-level set-up of the win-
dow used by the hint control.
ActivateHint is called when the
hint window needs to be displayed.
It ensures that the hint will be
entirely drawn on-screen, and then
shows the hint window, making it a
‘stay on top’ window at the same
time.

In order to achieve an effect such
as a more rounded hint window,
one approach would be to get the
normal rectangle to be drawn tran-
sparently (and borderless) and
then draw our own ellipse in the
window.

To get the normal window to be
clear and borderless requires an
overridden CreateParams method.
Drawing the new shape needs a
new Paint method. Additionally,
when the hint is activated, we need
to ensure that the normal window
size is enlarged slightly so that all
the text can fit into the new
non-rectangular shape.

Figure 1 shows our new novelty
hint window in action.

THintWindow = class(TCustomControl)
private
 procedure CMTextChanged(var Message: TMessage);
 message CM_TEXTCHANGED;
protected
 procedure CreateParams(var Params: TCreateParams); override;
 procedure Paint; override;
public
 constructor Create(AOwner: TComponent); override;
 procedure ActivateHint(Rect: TRect; const AHint: string); virtual;
 function IsHintMsg(var Msg: TMsg): Boolean; virtual;
 procedure ReleaseHandle;
 property Caption;
 property Color;
 property Canvas;
end;

➤ Listing 1

procedure TMyHintWindowClass.CreateParams(var Params: TCreateParams);
begin
 Brush.Style := bsClear; { Make window transparent }
 inherited CreateParams(Params); { Set up normal attributes }
 Params.Style := Params.Style and not ws_Border; { Remove border }
end;

procedure TMyHintWindowClass.ActivateHint(Rect: TRect; const AHint: string);
begin
 { Make window bigger to accommodate new non-rectangular shape }
 Inc(Rect.Right, InflateX);
 Inc(Rect.Bottom, InflateY);
 { Set modified window size & move it on-screen }
 inherited ActivateHint(Rect, AHint);
end;

procedure TMyHintWindowClass.Paint;
var R: TRect;
 CCaption: array[0..255] of Char;
begin
 Canvas.Brush.Color := Color;
 R := ClientRect;
 Canvas.Ellipse(R.Left, R.Top, R.Right, R.Bottom);
 OffsetRect(R, InflateX div 2, InflateY div 2);
 Inc(R.Left);
 Canvas.Brush.Style := bsClear;
 StrPCopy(CCaption, Caption);
 DrawText(Canvas.Handle, CCaption, -1, R,
 dt_Left or dt_NoPrefix or dt_WordBreak);
 Canvas.Brush.Style := bsSolid;
end;

initialization
 Application.ShowHint := False;
 HintWindowClass := TMyHintWindowClass;
 Application.ShowHint := True;
end.

➤ Listing 2

Listing 2 shows the new methods
as well as the initialisation section
of the unit they come from (which
sets up the new hint class). The
project HINTWND.DPR on the disk
shows this in practice. It’s the extra
unit NEWHINTU.PAS that imple-
ments my new TMyHintWindowClass
class.

Now I’ll never be able to enable
hints in a Delphi application again
without an involuntary shudder in
anticipation of the weird and won-
derful hint windows I’ll find...

Brian Long is a freelance Delphi
consultant and trainer based in
the UK. He is available for book-
ings and can be contacted by email
on 76004.3437@compuserve.com

48 The Delphi Magazine Issue 16

	Customised Hints
	Get Shapely

